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This holds for the real earth. If the earth were homogeneous, then obviously D = p, 
so that Clairaut's equation re duces to 

(2-120) 

which has the solution df / dq = 0 or f = const. Thus the equisurfaces of homogeneous 
ellipsoidal equilibrium figures are geometrically similar ellipsoids (all have the same 
flattening i). This was derived here 80S an approximation of first order in f, but may 
be shown to be rigorously valid. This is the case of the Maclaurin ellipsoid to be 
considered in sec. 5.4. 

Finally we mention that, instead of solving the differential equation (2-114) with 
the appropriate boundary conditions, we could also try to solve the original equivalent 
integro-differential equations (2-105) or (2-111) iteratively. This approach may have 
numerical advantages (Denis, 1989), but from the conceptual and analytical point of 
view, which we are emphasizing throughout this book, the elegant and mathema.tically 
simple and transparent equation of Clairaut remains fundamental. 

Our further considerations will, therefore, follow the classical approach, submitting 
Clairaut's equation to an ingenious transformation due to Radau. 

E:r:ercise. Wavre (1932, p . 96) gives the elegant integro-differential equation 

: (Di) = 3
6 

] f(q')q'6dp 
q q q'=O 

where for differentiable p 
d - dp(q') d ' 
p- dq' q 

Show its equivalence to Clairaut's equation (2-114) by differentiation. 

2.6 Radau's Transformation 

Radau (1885) introduces the parameter 

q df dlnf 
TJ=--=--

f dq dlnq 
(2-121) 

In terms of Radau 's parameter we thus have 

df = 1J.. f 
dq q 

(2-122) 

and differentiation gives 

(2-123) 

TI 
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where we have used (2-122). On substituting this into Clairaut's equation (2-114), 
cancelling the common factor f, and multiplying by q2 we get Radau'3 equation 

(2-124) 

In this way we have transformed the second-order linear differential equation (2-114) 
into the first-order non-linear differential equation (2-124). 

As such, this is not very excitingj it even follows a standard mathematical pro ce­
dure employed in such cases (equations of Riccati type). It will, however, be found 
to work surprisingly well, almost by miracle. 

Consider the function (its choice will be motivated later) 

F(q)=Dl~ , (2-125) 

remembering that both the mean density D (in the volume enclosed by the equisurface 
q) and Radau's parameter 7] are functions of q. Its logarithmic derivative is (the prime 
denotes derivatives with respect to q) 

F'(q) dlnF D' 5 7]' 

F(q) =---;xq= D +q+2(1+7]) 

For 7]' = d7]/dq we get from (2-124): 

q7]' 

Here we have used 
P 1 D' 
- = 1 + -q­
D 3 D 

(2-126) 

(2-127) 

(2-128) 

which is an immediate consequence of (2-113). With (2-127), eq. (2-126) becomes 

F'(q) D' 7]2 + 57] D' 
q F(q) = q D + 5 - 2(1 + 7]) - qIi . 

Thus D'/D cancels (the first, minor, miracle) and there remains 

F'(q) 10 + 57] - 7]2 

q F(q) = 2(1 + 7]) 
(2-129) 

Remembering the definition of F(q) by (2-125) we thus have 

1 + 1 1 2 
F'( ) = 5D 4 "2 7] - 10 7] 

q q Vf+77 (2-130) 

or 

F'(q) = 5Dq41/J(7]) (2-131) 
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with 

(2-132) 

Now comes the second, major, miracle: 

(2-133) 

for a broad range of values of TJ (Table 2.1). Thus the rigorous formula (2-131), 
written by (2-125) as 

(2-134) 

may be replaced by Radau's approximation 

TABLE 2.1: The function 1{;(TJ) 

TJ 1{;( TJ) 
0 1.00000 +----- earth's center 
0.3 1.00072 
0.5 1.00021 
0.572 0.99959 +----- earth's surface 
0.6 0.99928 
1.0 0.98995 
2.0 0.92376 
3.0 0.80000 

(2- 135) 

In fact, at the earth's surface (q = R) we have by (2-121) and (2-118) 

5m 
TJ = 2' 7 - 2 = 0.572 = TJs , (2-136) 

and at the earth's center there is TJ = 0 by (2- 121) since f =I 0 for q = O. So for 
o ::; q ::; R, 1{;( TJ) will always be very elose to 1, to an accuracy comparable with our 
first-order approximation. 

Eq. (2-134), especially in Radau's approximation (2- 135), will playafundamental 
role in the next section. 
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