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or
47rG/rzp(r)dr g (2-5T7)

0

9= 2
now we may, without danger of confusion, write r instead of 7’ in the integrand, a
convenient and customary though somewhat questionable simplification since, after
the integral sign, r denotes the integration variable, whereas as the upper limit of
integration and before the integral sign, 7 denotes the radius vector of P at which V
and g are considered (Fig. 2.2).

The physical interpretation of (2-57) is very clear. The part of the earth’s mass
which is enclosed by the surface Sp is

Mp = / // p(r"rdr'do = 41r/pr dr (2-58)

r'=0 o
by (2-52), so that (2-57) may be written
_ GMp

72
in agreement with (2-33) and (2-37). This is the attraction of the “core” within Sp,
whereas the attraction of the outer shell is zero, by (2-36). This is quite analogous
to the homogeneous case (2-37).

Using this analogy, it is also extremely convenient and useful to introduce the
mean density D within the sphere Sp by

3

4773

3 (2-59)

Mp ’ (2_60)

in agreement with (2-38), which is the fictitious constant density producing the same
attraction (2-59) on and outside Sp as the real density distribution p(r) inside Sp.
By (2-58) we have

= T—3/pr2dr = D(r) (2-61)
0
(D is constant within Sp but, depending on Sp, it depends on r!). Finally, (2-58),

(2-59), and (2-61) give
4G

9(r) = rD(r) (2-62)

a useful formula which is the analogue of (2-39) for a heterogeneous, spherically
symmetric stratification.

2.3 Homogeneous Ellipsoid: First-Order Theory

Since the earth is not homogeneous, the theory of a homogeneous ellipsoid only plays
an auxiliary and preparatory role, although an important one.
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Consider a homogeneous ellipsoid of revolution, of density

p = const. (2-63)

By first-order theory we mean, as usual, that only terms linear in f are considered,
O(f?) being neglected. To this approximation, its surface is given by (2-6),

r=R [l — ngz(cos 0)] . (2-64)

This equation may be interpreted geometrically as in Fig. 2.3: the ellipsoid consists of

FIGURE 2.3: Ellipsoid and mean sphere

a “basic sphere” of radius R and “extra material” (plus or minus). Thus its potential
is given by

V= V,Ppm.c o o A (2—65)

Here v denotes the potential due to the “extra material”, which to our approximation
may be considered compressed into a surface layer on the sphere, of surface density

r=ph , (2-66)

where p is the volume density and h the thickness of the layer (Fig. 2.3). The potential
of this layer is given by (1-5):

v:Glf‘T‘dS=Gp{/%ds , (2-67)

in view of (2-63). Putting

dS = R’do. (2-68)
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we may replace the integration over the sphere S by an integration over the unit
sphere o:

h
= 2 7, A
v—GpR[ Lo . (2-69)
The deviation h of the ellipsoid from the sphere (Fig. 2.3) is, by (2-64),
fi= —g fRPy(cosb) , (2-70)

so that (2-69) becomes, with ' as integration variable,
2 P, 9
d= —§prR3//@da : (2-71)

Assuming the potential to be calculated at a point with 7 > R (external potential),
we may apply (1-53) with 7' = R (remember that we have a surface layer on the

sphere 7 = R), so that
it
7= Z ) P,(costp) . (2-72)
This is substituted into (2-71) and the order of integral and sum is interchanged,
obtaining with v = v, (external potential):

=——G of 32 oh //Pz(cosﬂ w(cosy)do . (2-73)

Now by (1-51) with Y3(8’, \') = P,(cos #'), orthogonality removes all terms except the
one with n = 2, for which by (1-49) we simply get

/ P;(cos 8')Py(cosp)do = 4?” Py(cos ) . (2-74)

Thus (2-73) reduces to

Vo= — ?g pf PZ(COSO) ; (2-75)

This is added to the potential of a homogeneous sphere as given by (2-31) with
M = ,oR3
by (2-38), in agreement with (2-65). The result is
4r RN
W= 5 Gp Pl fPy(cosf)| . (2-76)

This is the desired formula for the external potential of a homogeneous ellipsoid.

k
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For the internal potential (r < R) we proceed in exactly the same way, substituting
1 oo ,r"
7= 2 grmbalcosy) (2-77)
instead of (2-72), into (2-71) and obtaining the internal potential v = v;. Again,

orthogonality eliminates all terms except n = 2, and (2-74) again applies. The result
is

v; = —3—: Gpfr®Py(cosf) . (2-78)

In order to apply (2-65), we must use for the inner spherical potential the expression
(2-43), obtaining

4 o e B0 (NN N ]
= — — — = — = —79
| - Gp [2 R 2% g fr®Py(cos ) (2-79)

as the formula for the internal potential of a homogeneous ellipsoid. In both formulas

(2-76) and (2-79), terms of O(f?) are neglected. These two formulas will serve as a
basis for computing the potential of a heterogeneous (stratified) ellipsoid.

2.4 Heterogeneous Ellipsoid

Homogeneous shell. As a preparation, consider a thin ellipsoidal shell (of infinitesi-
mal thickness), bounded by two ellipsoids E; and E,, within which the density p is
constant.

In the same way as we have assigned, in Fig. 2.3, to an ellipsoid FE its mean sphere
S (of radius R, which defines R as mean radius for E), we can assign such spheres
to E, and E,; let ¢ be the mean radius of the inner ellipsoid E; and ¢ + dg the
mean radius of the outer ellipsoid E; (remember they are infinitesimally close to each

other). Similarly let f denote the flattening of E; and f + df that of E,, and let f be
a function of g,

f=1f(4q , (2-80)
so that df
¥ =g.d - (2-81)
Then the equation of E; is, by (2-64),
r=4q [1 - g fPy(cos 0)] (2-82)
and that of E,,
r=(+dg) [1-3(f + d)Pi(eost)] (2-83)

keeping in mind that f and df depend on ¢ through (2-80) and (2-81).
Now comes the important step. In order to determine the potential of the shell,
consider the homogeneous solid ellipsoid bounded by E,, of constant density p, and
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