
4 CHAPTER 1 BACKGROUND INFORMATION 

a modern Geodetie Referenee System (Marussi et al., 1974). 
The eombination of satellite and terrestrial data has provided us with global mo­

dels for the extern al anomalous gravitational potential (cf. Rapp, 1986) of eonsi­
derable aeeuraey and resolution whieh eall for an interpretation in terms of mass 
anomalies in the earth's mantle. This forees geodesists (though somewhat reluctantly) 
to go to the diffieult and treaeherous field of gravimetrie inverse problems. 

The prineipal problem in applying Molodensky's theory to mountainous areas 
is that this theory requires gravity or other data to be given continuotMly on the 
earth's surfaee. Real measurements, however, are made at di3crete points only, and 
thus we have to interpolate in between. An indispensable tool for interpolation in 
mountain areas and for other geodetie purposes is i303tatic reduction which, after 
having played a fundamental role in the first half of the present eentury, has somewhat 
been relegated to the background afterwards. Now isostasy witnesses a revival and 
it seems appropriate to reeonsider it, especially sinee modern computers also permit 
the use of more sophisticated and more realistie models. 

The aim of these historical remarks has only been to motivate a book of the present 
type. Anyone interested in geodetic his tory as such will find ample material in books 
from (Todhunter, 1873) to (Levallois, 1988). 

1.2 Elements of Gravitation and Gravity 

A basic background of elementary physical geodesy, corresponding perhaps to the 
first three chapters of (Heiskanen and Moritz, 1967), will facilitate reading this book. 
In order to make it as self-contained as possible, however, we shall here collect some 
elementary facts on potential theory and physieal geodesy. Proofs and more details 
can be found, e.g., in (Sigi, 1985) and (Heiskanen and Moritz, 1967). Advanced 
aspects such as treated in (Moritz, 1980) will not be needed (with a few exceptions, 
cf. sees. 4.1.5, 7.5, and 8.3.2). 

First we introduee a fundamental earth-nxed rectangular co ordinate system xyz 
defined in the usual way: the origin is at the earth's center of mass (the geocenter), the 
z -axis coincides with the mean axis of rotation, the x -axis lies in the mean Greenwich 
meridian plane and is normal to the z -axis; the y -axis is normal to the xz -plane and 
directed so that the xyz system is right-handed; the xy -plane is thus the (mean) 
equatorial plane. 

One uses a mean axis of rotation and a mean Greenwich meridian plane in order 
to get a definition independent of time, in view of very small and more or less periodic 
changes in the instantaneous rotation axis and of deformations of the earth's body 
(the interested reader might eonsult (Moritz and Mueller, 1987)). 

The gravitational potential of the earth may be expressed by the Newtonian integral 

V(P) = V(x, y, z) = G 111 d~ = G 111 ydv (1-1) 

where (Fig. 1.2) P(x, y , z ) denotes the point at which V is ealculated, Q is the 
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FIGURE 1.2: Illustrating eqs . (1-1) and (1-5) 

point, variable witrun the earth's body, wruch forms the center of the mass element 
dm or the volume element dv, I is the distance between P and Q (solid straight line), 
and p = p(Q) = dm/dv is the mass density at Q. Gis the Newtonian gravitational 
constant 

(1-2) 

The integral is to be extended over the whole earth's body v, wruch includes the 
solid and liquid parts. The (very small) effect ofthe atmosphere is usually disregardedj 
if necessary, it can be taken into account by corrections, which have the relative order 
of 10-6

• The same treatment may be applied to temporal variations of V (due to 
earth tides, etc.) wruch have the order of 10-7

• Atmospheric effects and temporal 
variations will consistently be disregarded here. 

Even so, the representation (1-1) has only theoretical importance because its 
practical use would require the knowledge of the detailed density distribution witrun 
the earth, wruch obviously is not known. 

For large distances 

(1-1) may be expressed as 

as r --+ 00 (1-3) 

M denoting the total mass of the body and O(1/r2 ) (read O( €) as "term(s) of order €") 
symbolizing a term that, for r --+ 00, tends to zero as 1/r2 • The physical sense of trus 
equation is that, at large distances and approJcimately, any body acts gravitationally 
as a point mass. 
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Eq. (1-1) represents the potential of a volurne di8tribution of density p, assumed 
piecewise continuous. This is a good description for the real earth. For certain 
computations we shall also need the potential 0/ a 8ur/ace layer, which does not occur 
naturally in gravitation (it does so in electrostatics) but nevertheless serves as a useful 
mathematical fiction. 

The mass is now concentrated on the surface S, with thickness zero and density 

dm 
J.l.= dS 

so that, in analogy to (1-1), the potential of a surface layer is expressed by 

Vs(P) = G !! d~ = G !! T dS 
s s 

(1-4) 

(1-5) 

where now J.l. = J.l.( Q') and the surface element S replaces the volume element dv; now, 
of course, I is the distance between P and Q' (broken straight line in Fig. 1.2). For 
r --4 (Xl, Vs also satisfies the relation (1-3). After this digression on surface potentials, 
we return to the case of the real earth, eq. (1-1). 

The gravity potential W is the sum of V and the potential of the centrifugal force, 

(1-6) 

so that 

(1-7) 

w being the angular velo city of the earth's rotation (which is considered constant). 
The field of potential V is called the gravitational field; the field of potential W is 

the gravity field. 
The gravity vector g is the gradient of W: 

(1-8) 

its components are the partial derivatives of W with respect to x, y, z. It is the resul­
tant of the gravitational force gradV and the centrifugal force grad<I> = [w 2 x, w2y, OJ 
(we do not notationally distinguish between row and column vectors and use boldface 
only for "geometrie" vectors such as for the gravity vector g and the coordinate vector 
x). . 

The potentials V and W, as well as the gravity vector g, are continuo~s throughout 
the whole three-dimensional space. Trus no longer holds for second derivatives; cf. 
eqs. (1-13) and (1-14) below, which show a discontinuity at S. 

The second-order partial derivatives of V form a symmetrie matrix 

(1-9) 
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which is called the (second-order) gravitational gradient tenJor. Similarly, the second­
order derivatives of W form the tenJor 0/ gravity gradientJ. 

The trace of the matrix (1-9) is the Laplaeian of V: 

6. V = Vzz + VI/li + V.. (1 - 10) 

Outside the attracting masses, above the earth's surface S, V satisfies Laplaee'3 equa­
tion 

6.V=O (1-11) 

The solutions of this equation are called harmonie functionJ . In the earth's interior, 
inside S, the potential V satisfies Poi3.wn'ß equation 

6.V = -47fGp (1- 12) 

6. V and p referring to the same point inside S. 
The corresponding relations for the gravity potential Ware, in view of (1-6), 

6.W 

6.W 

2w2 outside S 

-47fGp + 2w2 inside S 

The magnitude, or norm, of the gravity vector g is gravity 9 

9 = Ilgll 

the direction of g, expressed by the unit vector 

(1-13) 

(1-14) 

(1-15) 

(1- 16) 

is the direction of the vertical, or plumb line; we have chosen the minus sign so that 
n points upwards. 

As we have already mentioned in sec . 1.1 , the surfaces 

W(z , y, z) = const . (1- 17) 

are the level ßurfaeel, or equipotential wrfaee3. It is easily shown that the plumb line 
vector n is everywhere perpendicular to these surfaces. 

Denoting by 8/8n the derivative along this vector n, we readily get from (1-8) 
and (1- 15) 

8W 
9 = - a:;; (1-18) 

the minus sign being in agreement with (1- 16). 
For the derivative 89/ an we have Brun3 I formula 

89 an = - 2gJ + 47fGp - 2w 2 
(1-19) 
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where 

J= ~(~+~) 
2 R 1 R 2 

(1-20) 

denotes the mean curvature of the level surface passing through the point under 
consideration, with R 1 and R 2 being its principal radii of curvature. Eq. (1-19) is 
a nontrivial consequence of (1-14); its derivation can be found in (Heiskanen and 
Moritz, 1967, pp. 51-53). It will play a basic role in Wavre's theory of equilibrium 
figures. 

Normal and anomaloua gravity field. Since the actual gravity field is mathemat­
icaIly rather complicated, it is usuaIly referred to anormal gravity field of a simple 
analytical nature. In general, the normal gravity potential U is chosen in such a way 
that the reference ellipsoid is an equipotential surface for U: 

U(x, y, z) = Uo = const. (1-21) 

in the same way as the geoid is an equipotential surface for the actual gravity potential 
W: 

W(x, y, z) = Wo = const. (1-22) 

we may assurne Uo = Wo. The normal potential U will be considered in detail in 
Chapter 5; here we only mention Sornigliana's closed formula for normal gravity I on 
the ellipsoid: 

ale cos2 <p + lryp sin2 <p 
I = 7======~=~ Ja2 cos2 <p + b2 sin2 <p 

(1-23) 

where a and bare shown in Fig. 1.1, le and IP denote normal gravity at equator and 
pole, respectively, and <p indicates geograph.icallatitude on the ellipsoid (sec. 1.4). 

The difference 

T=W-U (1-24) 

for the same point is caIled anomaloua potential, or diaturbing potential. Denoting by 
N the height of the geoid (1-22) above the reference ellipsoid (1-21), we have the 
famous formula 

N=! (1-25) 
I 

also due to Bruns, which is as elementary as it is intriguing, besides being extremely 
useful. 

1.3 Spherical Harrnonics 

In this section we shaIl collect some well-known but very important formulas for 
spherical harmonies for later reference; the notations follow (Heiskanen and Moritz, 
1967), sections 1- 8 through 1- 15 , 2- 5, and 2-9. 
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